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Dynamical aspects of one-dimensional Maxwellian relaxation
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Department of Physics, University of Wisconsin–Parkside, Kenosha, Wisconsin 53141
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Subtle features of the relaxation of one-dimensional binary mixtures of elastic particles are explored for two
extreme mass ratios, corresponding to the minimum as well as a very large relaxation time of the velocity
distribution functions of the system. An interpretation of the relaxation time is also given in the context of
thermodynamics.@S1063-651X~98!00402-4#

PACS number~s!: 51.10.1y, 02.70.Lq, 05.20.Dd
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Recently, we reported the results of investigations on
relaxation of one-dimensional binary mixtures of elastica
colliding particles by solving the nonlinear Boltzmann equ
tion and computer simulations@1#. The results confirmed
some of those obtained by other investigators@2–4# and re-
vealed some different interesting features of the system
this Brief Report we explain some of the subtleties of t
evolution of such systems towards equilibrium.

When the mass ratio in a one-dimensional binary mixt
of elastic particles is either unity or infinity, the system
nonergodic and the initial velocity distribution is conserve
At all other mass ratios, the velocity distribution for ea
type of particle oscillates between unimodal and bimo
Gaussian-like forms, which eventually evolves into a sin
Gaussian, with a minimum relaxation time at the mass ra
of 312&.

We will show that the unimodal and bimodal distributio
observed during the relaxation of the system are actu
systems of a large number of spikes with binomial en
lopes. As time increases, these peaks approach each o
the number of spikes in each envelope increases, and
envelope evolves into a Gaussian. The shorter the relaxa
time, the faster these evolutions. At the mass ratio o
12&, when the relaxation time is a minimum, the distrib
tion function is always unimodal with a binomial envelop
which relaxes into a Gaussian in a minimum time. We a
give an interpretation of the minimum relaxation time,
defined previously@1#, in the context of the principle of eq
uipartition of energy.

In a binary mixture of elastic particles in one dimensio
consisting of equal numbers of mass unity and massm par-
ticles (m.1), and the initial conditions

f ~y,0!5 1
2 @d~y2y0!1d~y1y0!#, g~u,0!5d~u!, ~1!

the velocity distribution function of the mass-1 particles
Fourier space at even time steps is given by@1,5#

F~k,t !5 )
m50

t/2

cosS t
2mD@a t22m~bg!mk#. ~2!
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In this equation the exponent of each cosine function i
binomial coefficient

S t
2mD5

t!

~2m!! ~ t22m!!
, ~3!

the parametersa, b, andg are defined by

a[
12m

11m
, b[

2

11m
, g[

2m

11m
, ~4!

and the units are chosen so thaty051.
We consider a small mass difference between the

particles as the mathematics is amenable. Letm511e,
where e!1. Then a'2e/2, b'12e/2, and g'11e/2.
The low-y behavior of the distribution function will be domi
nated by the highest-frequency term inF(k,t), which will be
~in order of descending frequency!

F~k,t !5cos@~bg! t/2k#cosS t22
t D@a2~bg! t/221k#3•••

'cosF S 4~11e!

~21e!2 D t/2

kGcosS t22
t DF S e

2D 2

kG3•••

'
1

2~ t22
t

!11 (
n50

S t
t22D S S t

t22D
n

D
3XexpH i

e2k

4 F2n2S t
t22D G1 i S 4~11e!

~21e!2 D t/2

kJ
1expH i

e2k

4 F2n2S t
t22D G2 i S 4~11e!

~21e!2 D t/2

kJ C,
~5!

which results in

f ~y,t !'
1

2S t22
t D11

(
n50

S t
t22D S S t

t22D
n

D
3FdXy2

e2

4 F2n2S t
t22D G2S 4~11e!

~21e!2 D t/2C
1dXy2

e2

4 F2n2S t
t22D G1S 4~11e!

~21e!2 D t/2CG ~6!:
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representing two families of discrete peaks with binom
envelopes centered at

y56S 4~11e!

~21e!2 D t/2

~7!

that converge on Gaussian envelopes while approaching
other as time evolves. Clearly, fore50 the distribution re-
mains forever a pair of spikes aty561. For eÞ0, on the
other hand, the spikes in the binomial envelopes move
wards each other with a rate that increases withe, ultimately
merging into a single Gaussian distribution centered ay
50.

In the special casem5312&, the distribution function
in Fourier space reduces to a simple closed form@1#, from
which the velocity distribution can be obtained exactly,

f ~y,t !5S 1

2D 2t21

(
n50

2t21

S 2t21

n D dXy2S 2t2122n

2t/2 D C. ~8!

Equation~8! shows that for this mass ratio the velocity di
tribution function is unimodal at all times, consisting of
family of spikes with a binomial envelope, which converg
on a Gaussian ast→`.

Figure 1 shows the velocity distribution function for th

FIG. 1. Velocity distribution function of the mass-1 particles
a binary mixture with a mass ratio of 312& after ~a! 7 time steps
and ~b! 8 time steps. The vertical lines are computer simulati
results and the circles are from the theory.
l

ch
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mass-1 particles aftert57 and 8 time steps, when the ma
ratio in the system is 312&. These results are obtained b
Monte Carlo computer simulations, using the algorithm d
scribed in Ref.@1#. The theoretical results, which are in e
cellent agreement with the simulations, are also given
comparison. Note that according to Eq.~8!, the spikes are
equally spaced and are located at the positions given by

yn5
2t2122n

2t/2 , n50,1,2,3, . . . ,2t21. ~9!

Figure 2 shows the same results for the mass ratio om
51.1 aftert599 and 100 time steps, in which the switchin
behavior of the distribution function between unimodal a
bimodal is obvious. It should be noted that for any mass ra
other than 312&, the spikes within the binomial envelope
are not equally spaced. Finally, Fig. 3 shows the theoret
and simulational results for the approaching rate of the bi
mial peaks in the bimodal distribution of the mass-1 partic
when the mass ratio is 1.1.

We will now give an interpretation of the relaxation tim
for the system@1#,

FIG. 2. Computer simulation results for the velocity distributio
function of the mass-1 particles in a binary mixture with a ma
ratio of 1.1 after~a! 99 time steps and~b! 100 time steps. Each dar
region is developed by the congestion of a very large numbe
spikes.



e

e
en

he

ar
r,
g
e

e

the
he

fter

he

f

the
e-
,
for

re

u-
nt
he
evo-
l,

on

and
m-
n-
c-

ic
f
v-

u
th

2462 57BRIEF REPORTS
t[2
1

lnuju
, ~10!

wherej is defined by

j[a22bg5
126m1m2

~11m!2 . ~11!

Since the root ofj is at 312& ~for m.1!, the relaxation
time is zero at this mass ratio. We consider the differenc
the kinetic energies of a mass-1 and a mass-m particle after a
binary collisionD1T in terms of their velocities before th
collision. Using the usual equations for energy and mom
tum conservation, we get

D1T[
1

2
mu/22

1

2
y /25

126m1m2

~11m!2 S 1

2
mu22

1

2
y2D

2
4m~12m!

~11m!2 uy5jD0T2
4m~12m!

~11m!2 uy, ~12!

whereD0T is the difference in the kinetic energies before t
collision. We see that for the mass ratio of 312&, when
j50 and the relaxation time is a minimum~zero!, the elastic
collision equally divides the energy between the two p
ticles only if one of the particles is initially at rest. Howeve
even in this case, the second collision breaks the ener
apart. Therefore, the problem of minimum relaxation tim
cannot be related to the individual binary collisions betwe
the two types of particles.

FIG. 3. Peak-to-peak distance in the bimodal velocity distrib
tion function of the mass-1 particles as a function of time, when
mass ratio is 1.1. The continuous curve is from Eq.~7! and the
markers are the computer simulation results.
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We now consider the average ofD1T over all colliding
pairs in the binary system of particles, with respect to
pair distribution function. Assuming molecular chaos, t
quantity ^uy&50 and Eq.~12! reduces to

^D1T&[5j^D0T&. ~13!

Similarly, the average difference in the kinetic energies a
the second time stepD2T is given by

^D2T&5j^D1T&5j2^D0T& ~14!

and so on. Therefore, aftert time steps we have

^D tT&5j t^D0T&. ~15!

Equation~15! describes the evolution of the system into t
equipartitioned state. The smaller thej the faster the energy
divides itself equally~on the average! among the particles o
the system. For the mass ratio of 312& when j50, this
happens after the first collision.

In summary, we see that even though in these systems
tail of the distribution function for each type of particle, d
termined by the small-k behavior of its Fourier transform
relaxes to the expected Gaussian form in a minimal time
the mass ratio of 312& @1#, other portions of the distribu-
tion, namely, the low-velocity region, evolves much mo
slowly. The relaxation of the distribution aroundy50 there-
fore sets the limit for overall relaxation rate of the distrib
tion, requiring a reinterpretation of what precisely is mea
by the relaxation time of the system. Evolution towards t
equipartition of energy occurs at the same pace as the
lution of the tail of the velocity distribution in this mode
which is obvious from the fact that

^y2~ t !&5E y2f ~y,t !dy ~16!

contains no contributions from the portion of the distributi
that is evolving the slowest, namely, they50 region, and
weights the high-y portion ~the tail! most heavily.

Since the system is assumed to be at constant volume
uniform density, the only thermodynamic variable is the te
peratureT. This means that since all thermodynamic pote
tials are obtained from the derivatives of the partition fun
tion with respect toT and that the Hamiltonian is quadrat
in y, all thermodynamic potentials will relax with the tail o
the velocity distributions, which are the most rapidly evol
ing parts of the distributions.
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