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Dynamical aspects of one-dimensional Maxwellian relaxation
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Subtle features of the relaxation of one-dimensional binary mixtures of elastic particles are explored for two
extreme mass ratios, corresponding to the minimum as well as a very large relaxation time of the velocity
distribution functions of the system. An interpretation of the relaxation time is also given in the context of
thermodynamics[S1063-651X98)00402-4

PACS numbsgps): 51.10+y, 02.70.Lq, 05.20.Dd

Recently, we reported the results of investigations on thén this equation the exponent of each cosine function is a
relaxation of one-dimensional binary mixtures of elasticallybinomial coefficient
colliding particles by solving the nonlinear Boltzmann equa-

tion and computer simulationgl]. The results confirmed ty t! 3
some of those obtained by other investigaj@s4] and re- 2m)  (2m)!(t—2m)!’ 3
vealed some different interesting features of the system. In
this Brief Report we explain some of the subtleties of thethe parameters, 8, andy are defined by
evolution of such systems towards equilibrium.

When the mass ratio in a one-dimensional binary mixture o= 1-m B= 2 _ 2m @
of elastic particles is either unity or infinity, the system is 1+m’ 1+m’ " 1+m’

nonergodic and the initial velocity distribution is conserved.

At all other mass ratios, the velocity distribution for eachand the units are chosen so thgt=1.

type of particle oscillates between unimodal and bimodal We consider a small mass difference between the two

Gaussian-like forms, which eventually evolves into a singleparticles as the mathematics is amenable. iet1+e,

Gaussian, with a minimum relaxation time at the mass ratiovhere e<1. Then a~—¢€/2, B~1—€/2, and y~1+€/2.

of 3+2v2. The low-v behavior of the distribution function will be domi-
We will show that the unimodal and bimodal distributions nated by the highest-frequency termFigk,t), which will be

observed during the relaxation of the system are actuallyin order of descending frequency

systems of a large number of spikes with binomial enve- o2

lopes. As time increases, these peaks a_pproach each othel;(k,t):cos{(lgy)tﬂk]coé, t >[a2(/g7)t/2*1k]><...

the number of spikes in each envelope increases, and each

(6)

envelope evolves into a Gaussian. The shorter the relaxation —co 4(1+e) tlzk cod 23l [ € 2k ‘...
time, the faster these evolutions. At the mass ratio of 3 (2+¢€)? 2
+2v2, when the relaxation time is a minimum, the distribu- e
tion function is always unimodal with a binomial envelope, 1 lt—2) ( t )
which relaxes into a Gaussian in a minimum time. We also ~—— E t—2
. . . .. . . 2(t72)+1 n=0
give an interpretation of the minimum relaxation time, as n
defined previously1], in the context of the principle of eq- ) 1
uipartition of energy. x(ex i e_k 2n—( t ”H M)t
. . . . . . . _ 2
In a binary mixture of elastic particles in one dimension, 4 t—2 (2+¢€)
consisting of equal numbers of mass unity and nmagsar- 24 A1+ e\ 12
ticles (m>1), and the initial conditions +exp i €® 2n—( t ”—i dd+e k )
4 t—2 (2+€)? '
f(v,0=3[8(v—10)+ 8(vt )], g(u,0=5(u), (1) ®
which results in
the velocity distribution function of the mass-1 particles in
Fourier space at even time steps is given by (¢ 2o) ( t )
fo)~—=— > | [1=2
t/2 L ol t7)+1 n=0 n
_ Ir t—2m m
F(kt)=T] coszm[at~2m(By)"k]. @ ) 5( el ( t H 41t e t/z)
VT [ t-2) T 2 e
el
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FIG. 1. Velocity distribution function of the mass-1 particles in FIG. 2. Computer simulation results for the velocity distribution

a binary mixture with a mass ratio of32v2 after (a) 7 time steps fun_ction of the mass-} particles in a binar_y mixture with a mass
and (b) 8 time steps. The vertical lines are computer simulation'@tio of 1.1 after(a) 99 time steps an(b) 100 time steps. Each dark
region is developed by the congestion of a very large number of

spikes.

representing two families of discrete peaks with binomial

envelopes centered at mass-1 particles aftar=7 and 8 time steps, when the mass
ratio in the system is 3 2v2. These results are obtained by

(7) Monte Carlo computer simulations, using the algorithm de-
scribed in Ref[1]. The theoretical results, which are in ex-

) ] ) cellent agreement with the simulations, are also given for

that converge on Gaussian envelopes while approaching eagimparison. Note that according to E@), the spikes are

other as time evolves. Clearly, fer=0 the distribution re-  equally spaced and are located at the positions given by

mains forever a pair of spikes at=*1. For e#0, on the

other hand, the spikes in the binomial envelopes move to-

results and the circles are from the theory.

4(1+¢€)\ "2

=4 —
VTl 27 6)2

wards each other with a rate that increases wjthitimately 2t=1_2n .
merging into a single Gaussian distribution centered at Un= ot n=0123...,27% 9
=0.

In the special casemn=3+2v2, the distribution function
in Fourier space reduces to a simple closed fétr from Figure 2 shows the same results for the mass rationof
which the velocity distribution can be obtained exactly, =1.1 aftert=99 and 100 time steps, in which the switching
12l 1 b_ehaviorl of th_e distribution function between unimodal anq
funt)= (_) 3 (2 )5(1;— ( 2 —ZH)) ® bimodal is obvious. It should be noted that for any mass ratio
’ 2 =\ n 212 : other than 3+ 2v2, the spikes within the binomial envelopes
are not equally spaced. Finally, Fig. 3 shows the theoretical
Equation(8) shows that for this mass ratio the velocity dis- and simulational results for the approaching rate of the bino-
tribution function is unimodal at all times, consisting of a mial peaks in the bimodal distribution of the mass-1 particles
family of spikes with a binomial envelope, which convergeswhen the mass ratio is 1.1.
on a Gaussian as—oe. We will now give an interpretation of the relaxation time
Figure 1 shows the velocity distribution function for the for the systeni1],
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22 We now consider the average af; T over all colliding
pairs in the binary system of particles, with respect to the
pair distribution function. Assuming molecular chaos, the
quantity(uv)=0 and Eq.(12) reduces to

20 ¢

1.8 (A T)==&AT). (13

A”peak /v,

16 1 Similarly, the average difference in the kinetic energies after
the second time stefd,T is given by

(A, T)=E(A T)=EXAqT) (14
" 0 100 200 200 400 and so on. Therefore, aftértime steps we have
t (units of time step)
(A{T)=EYAQT). (15)

FIG. 3. Peak-to-peak distance in the bimodal velocity distribu-
tion function of the mass-1 particles as a function of time, when theequation(15) describes the evolution of the system into the
mass ratio is 1.1. The continuous curve is from £0. and the  equipartitioned state. The smaller thi¢he faster the energy
markers are the computer simulation results. divides itself equally(on the averageamong the particles of
the system. For the mass ratio of-2v2 when £=0, this
happens after the first collision.

In summary, we see that even though in these systems the
tail of the distribution function for each type of particle, de-
where{ is defined by termined by the smak- behavior of its Fourier transform,

relaxes to the expected Gaussian form in a minimal time for
- . (12) the mass ratio of 3 2v2 [1], other portions of the distribu-
(1+m) tion, namely, the low-velocity region, evolves much more

. . . slowly. The relaxation of the distribution around-0 there-
Since the root o is at 3+2v2 (for m>1), the relaxation fore sets the limit for overall relaxation rate of the distribu-

tlr:nek_ls zgro at th.'s m?ss ratlo.iNe (cj:on5|der th? |d|ffe;rence IrEion, requiring a reinterpretation of what precisely is meant
the kinetic energies of a mass-1 and a massarticle aftera 1, yhe relaxation time of the system. Evolution towards the

bi??r.y coIIisi_onAﬁT in telrms of their velocities be;ore the equipartition of energy occurs at the same pace as the evo-
collision. Using the usual equations for energy and mOmeNsiqn of the tail of the velocity distribution in this model,

tum conservation, we get which is obvious from the fact that

Y y
T (0

) 1—6m+m?
{=a’—By=

1 1 1-6m+m? (1 1
AT=Cmu2— 22" [ mi- = UZ)
2 2 (1+m)* 12 2 <uz(t)>:f 2f(v,t)dv (16)
4m(1—m) Am(1—m)
N Uv=4§AgT— (1+m)? uv, (12 contains no contributions from the portion of the distribution

(1+m)?
that is evolving the slowest, namely, the=0 region, and

whereA,T is the difference in the kinetic energies before theweights the highy portion (the tai) most heavily.
collision. We see that for the mass ratio of-2v2, when Since the system is assumed to be at constant volume and
£=0 and the relaxation time is a minimuf@ero, the elastic  uniform density, the only thermodynamic variable is the tem-
collision equally divides the energy between the two par{eratureT. This means that since all thermodynamic poten-
ticles only if one of the particles is initially at rest. However, tials are obtained from the derivatives of the partition func-
even in this case, the second collision breaks the energid®n with respect tol' and that the Hamiltonian is quadratic
apart. Therefore, the problem of minimum relaxation timein v, all thermodynamic potentials will relax with the tail of
cannot be related to the individual binary collisions betweerthe velocity distributions, which are the most rapidly evolv-
the two types of particles. ing parts of the distributions.
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